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Healthy subjects tend to exhibit a bias of visual attention whereby left hemifield stimuli are processed more quickly and accurately than
stimuli appearing in the right hemifield. It has long been held that this phenomenon arises from the dominant role of the right cerebral
hemisphere in regulating attention. However, methods that would enable more precise understanding of the mechanisms underpinning
visuospatial bias have remained elusive. We sought to finely trace the temporal evolution of spatial biases by leveraging a novel bilateral
dot motion detection paradigm. In combination with electroencephalography, this paradigm enables researchers to isolate discrete
neural signals reflecting the key neural processes needed for making these detection decisions. These include signals for spatial attention,
early target selection, evidence accumulation, and motor preparation. Using this method, we established that three key neural markers
accounted for unique between-subject variation in visuospatial bias: hemispheric asymmetry in posterior � power measured before
target onset, which is related to the distribution of preparatory attention across the visual field; asymmetry in the peak latency of the early
N2c target-selection signal; and, finally, asymmetry in the onset time of the subsequent neural evidence-accumulation process with
earlier onsets for left hemifield targets. Our development of a single paradigm to dissociate distinct processing components that track the
temporal evolution of spatial biases not only advances our understanding of the neural mechanisms underpinning normal visuospatial
attention bias, but may also in the future aid differential diagnoses in disorders of spatial attention.
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Introduction
It has long been held that visuospatial attention is lateralized to
the right hemisphere (Bogen and Gazzaniga, 1965; Mesulam,

1981; Young and Ratcliff, 1983; De Renzi, 1985). Primary evi-
dence supporting this claim is that the neglect syndrome, which
involves a profound spatial inattention for the contralesional
hemifield, is more common, severe, and long-lasting following
right compared with left hemisphere damage (Stone et al., 1993;
Corbetta and Shulman, 2011). Subtle processing advantages for
visuospatial stimuli presented to the left hemifield are also seen in
most healthy individuals, a phenomenon known as “pseudone-
glect” (Bowers and Heilman, 1980; Nicholls et al., 1999; Jewell
and McCourt, 2000; Voyer et al., 2012). Recent evidence from
genetics (Bellgrove et al., 2005, 2007, 2008, 2009; Newman et al.,
2012; Zozulinsky et al., 2014) and structural, functional, and mo-
lecular brain imaging (Thiebaut de Schotten et al., 2011; Tomer et
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Significance Statement

The significance of this research is twofold. First, it shows that individual differences in how humans direct their attention between
left and right space reflects physiological differences in how early the brain starts to accumulate evidence for the existence of a
visual target. Second, the novel methods developed here may have particular relevance to disorders of attention, such as unilateral
spatial neglect. In the case of spatial neglect, pathological inattention to left space could have multiple underlying causes, including
biased attention, impaired decision formation, or a motor deficit related to one side of space. Our development of a single
paradigm to dissociate each of these components may aid in supporting more precise differential diagnosis in such heterogeneous
disorders.
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al., 2013; Chechlacz et al., 2015; Marshall et al., 2015) suggests
that substantial individual difference factors contribute to visu-
ospatial biases. Thiebaut de Schotten and colleagues reported
that individual differences in the degree of visuospatial bias cor-
related with the extent of hemispheric asymmetry in white matter
frontoparietal pathways, with larger volumes in the right, relative
to left, associated with faster response times for left, compared
with right, targets (Thiebaut de Schotten et al., 2011). One impli-
cation of this work is that individual differences in structural
hemispheric asymmetries may facilitate faster processing of visu-
ospatial stimuli presented to one or the other visual hemifield.

Perceptual decision making requires multiple neural-pro-
cessing stages ranging from those for representing, selecting, and
accumulating sensory information to those for preparing and
executing actions. Visuospatial asymmetries can potentially re-
flect the contribution of any one of these processing stages, and
thus the ability to measure each stage separately is important if we
are to understand the neural processes underpinning normal and
abnormal visuospatial biases. Recent developments in behavioral/
electroencephalographic (EEG) paradigms make it possible to mea-
sure discrete neural signals for each of these processing stages, which
are each related to forthcoming behavioral performance. Such sig-
nals include those that distribute attention across hemifields and are
measured via interhemispheric asymmetry in pretarget preparatory
� power (Thut et al., 2006; Loughnane et al., 2015); those that enable
early target selection and are measured in the form of the contralat-
eral N2c component (Loughnane et al., 2016); those that support
evidence accumulation and are measured via the centroparietal pos-
itivity (CPP), whose build-up rate predicts reaction time (RT) and
scales with sensory evidence strength independent of sensory or mo-
tor demands (O’Connell et al., 2012; Kelly and O’Connell, 2013);
and those that enable limb-selective motor preparation and are mea-
sured via contralateral �-band activity (Donner et al., 2009;
O’Connell et al., 2012; de Lange et al., 2013).

Disruption to one or more of these stages when processing left
or right hemifield targets could result in slower orienting and
decision responses. The development of a single paradigm that
can dissociate these neural signals within an individual and make
it possible to track temporal evolution of spatial biases could have
important theoretical and clinical benefits in terms of improved
differential diagnoses in conditions where aberrant visuospatial
attention indexes neurological vulnerability, such as unilateral
spatial neglect (Corbetta and Shulman, 2011), attention-deficit/
hyperactivity disorder (ADHD; Voeller and Heilman, 1988;
Sheppard et al., 1999; Geeraerts et al., 2008; Chan et al., 2009;
Bellgrove et al., 2013), and dyslexia (Facoetti et al., 2001; Hari et
al., 2001; Liddle et al., 2009; Stenneken et al., 2011).

Here, for the first time, we modeled individual differences in
left versus right hemifield RT asymmetry as a function of asym-
metries in neural signals representing each of the temporal stages
of perceptual decision making to determine which signals
explained unique variation in visuospatial bias among healthy
individuals.

Materials and Methods
Participants. Data were collected from 80 (42 female) healthy right-
handed volunteers, ages 18 –37 years (mean, 23.2 years), reporting
normal or corrected-to-normal vision, no history of neurological or psy-
chiatric disorder, and no head injury resulting in loss of consciousness.
Participants were recruited and tested under identical experimental pro-
tocols at either Monash University, Australia (N � 60), or Trinity College
Dublin, Ireland (N � 20). The experimental protocol was approved by
each university’s human research ethics committee before testing, and

carried out in accordance with the approved guidelines. Informed con-
sent was obtained from all participants before testing.

Materials and task procedures. Participants were seated in a darkened
room 56 cm from a 21 inch CRT (85 Hz, 1024 � 768 resolution) and
asked to perform a variant of the random dot motion task (Newsome et
al., 1989; Britten et al., 1992; Kelly and O’Connell, 2013; Loughnane et al.,
2016). In this version of the task, participants fixated centrally and mon-
itored two peripheral patches (one in each hemifield) of 150 moving dots
for targets, which were defined by a seamless transition from random
motion to coherent motion in a downward direction (Fig. 1A). Upon
detecting a target, participants made a speeded button press with their
right index finger. Peers et al. (2006), using a similar paradigm, found
that the response hand had no effect on spatial bias. Targets were sepa-
rated by intervals of random motion of 3.06, 5.17, or 7.29 s (randomized
throughout each block). Participants completed 16 blocks consisting of
18 targets, each block lasting �3 min. Participants were given a break of
�30 s in between each block. An SR Research EyeLink eye tracker (Eye-
Link version 2.04, SR Research/SMI) recorded eye movements, which
were later analyzed to ensure that participants maintained fixation. The
center of each random dot motion patch was at a visual angle 10° either
side and 4° below the fixation square; each patch covered 8° visual angle
and consisted of 150 6 � 6 pixel white dots. The dot stimuli were flickered
on and off the screen every 23.5 ms, resulting in a flicker rate of 21.25
frames/s (each “frame” representing two screen refreshes). During ran-
dom motion, these dots were placed randomly throughout the patch on
each frame. During coherent motion, a proportion (50%) of the dots was
randomly selected on each frame to be displaced in the downward direc-
tion on the following frame, with a motion speed of 6° per second. The
paradigm was run using Matlab (MathWorks) and the Psychophysics
Toolbox extensions (Brainard, 1997; Pelli, 1997; Cornelissen et al., 2002).

EEG acquisition and preprocessing. Continuous EEG was acquired
from 64 scalp electrodes using an ActiveTwo system (Biosemi) digitized
at 512 Hz (Trinity College Dublin data collection) or using a BrainAmp
DC system (Brain Products) digitized at 500 Hz (Monash University data
collection). Data were processed using a combination of custom scripts
and EEGLAB (Delorme and Makeig, 2004) routines implemented in
Matlab (MathWorks). All processing scripts used for the current study
can be found on-line (https://github.com/gerontium/big_dots). A 35 Hz
low-pass filter was applied off-line using a fourth-order Butterworth
filter, noisy channels were interpolated (spherical spline), and the data
were rereferenced to the average reference. Data from Trinity College
Dublin and Monash University were combined by resampling the data
collected in Dublin to 500 Hz. Epochs were then extracted from the
continuous data from �700 to 1800 ms around target onset, and base-
lined with respect to �100 to 0 ms before target onset.

Trials were excluded from analysis if any of the following conditions
were met: (1) if RTs were �150 ms (pre-emptive responses) or �1800 ms
(responses after coherent motion offset); (2) if the EEG from any channel
exceeded �100 �V during the interval from �500 to 0 ms before target
onset for pretarget-� analysis, or during the interval from �100 ms
before target onset to 100 ms after RT for the ERP analysis; or (3) if
central fixation was broken by blinking or eye movement �3° left or right
of center, either from �500 to 0 ms before target onset for pretarget-�
analysis or during the interval between 100 ms before target onset and
100 ms after response for the ERP analysis.

Power in the � band was calculated using temporal spectral evolution
(TSE) methods, following Thut and colleagues (2006). Each epoch was
bandpass filtered to � range (8–13 Hz), rectified (converted to absolute
values), and trimmed to exclude the 200 ms at the beginning and end of the
epoch to eliminate filter warm-up artifacts. Data were then smoothed by
averaging inside a moving window of 100 ms, moving forward in 50 ms
increments. � Measurements were pooled from two symmetric parietal re-
gions of interest (ROIs; left hemisphere: CP5, CP3, P5, P3; right hemisphere:
CP4, CP6, P6, P8; Thut et al., 2006; ter Huurne et al., 2013). Pretarget-�
power was defined as the mean power from �500 to 0 ms before target onset
(Newman et al., 2016) and aggregated to participant means.

The N2c and N2i components were measured contralateral and ipsi-
lateral to the target location, respectively, at electrodes P7 and P8 (Lough-
nane et al., 2016), while the CPP was measured at peak electrodes Pz
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(O’Connell et al., 2012; Kelly and O’Connell, 2013; Murphy et al., 2015;
Twomey et al., 2015; Loughnane et al., 2016).

The N2c, N2i, and CPP signals were aggregated to average waveforms
as a function of target hemifield for each participant. N2 latency was then
identified as the time point with the most negative amplitude value in the
stimulus-locked waveform between 150 and 400 ms for the N2c and
200 – 450 ms for N2i, while N2 amplitude was measured as the mean
amplitude inside a 100 ms window centered on the stimulus-locked
grand average peak (N2c: 266 ms; N2i: 340 ms; Loughnane et al., 2016).
CPP build-up rate was defined as the slope of a straight line fitted to the
response-locked waveform (O’Connell et al., 2012; Kelly and O’Connell,
2013; Loughnane et al., 2016) with the time window defined individually
for each participant as the 100 ms before the maximum CPP amplitude
preresponse. Onset latency of the CPP was measured by performing
running sample point by sample point t tests against zero across each
participant’s stimulus-locked CPP waveforms. CPP onset was defined as
the first point at which the amplitude reached significance at the 0.05
level for �15 consecutive points (Foxe and Simpson, 2002; Kelly et al.,
2008; Loughnane et al., 2016).

Left hemisphere � power (LHB; 20 –35 Hz) was measured from the
standard motor site C3, using short-time Fourier transform (STFT) with
a 286 ms window size and 20 ms step size (O’Connell et al., 2012). The
LHB signal was baselined with respect to �100 to 0 ms before target onset
and aggregated to average waveforms as a function of the target hemifield
for each participant. LHB amplitude was defined as the mean amplitude
of the stimulus-locked waveform during the 300 –500 ms window. The
LHB build-up rate was defined as the slope of a straight line fitted to the
response-locked waveform from �300 to �50 ms before response. Note

STFT and TSE methods for measuring LHB and � power yielded highly
comparable results.

Inferential analysis. Analysis of the effects of Hemisphere (left, right)
on pretarget-� power, and of Target Hemifield (left, right) on the N2c/i,
CPP, �, and RT measures were conducted using repeated-measures
ANOVA. In cases where the assumption of normality was violated, the p
value ( ppermuted) of a permutation test for the effect of Hemifield based on
1000 permutations is also reported.

To assess the extent that each of the neural signals (pretarget �, N2c/i,
CPP, �) could explain variation in visuospatial attention asymmetry be-
tween individuals, we calculated an index of each individual’s visuospatial
attention asymmetry as follows: RT asymmetry � (left target RT � right
target RT)/(left 	 right target RT). This index gives positive values when RTs
are faster for right relative to the left targets (rightward spatial bias) and
negative values when the opposite is true (leftward bias). Corresponding
neural signal indices were also calculated for each of the target-evoked signals
(i.e., N2c, CPP, and �) as follows: signal asymmetry � (left target signal �
right target signal)/(left 	 right target signal). A similar formula was used to
calculate hemispheric asymmetry for pretarget parietal � power: � asymme-
try � (right ROI � � left ROI �)/(right 	 left ROI �). This index gives
positive values when � activity is greater over the right hemisphere ROI
relative to the left hemisphere ROI and negative values when � activity is
greater over the left hemisphere ROI relative to the right. If no asymmetry
exists then the index gives a zero value (for comparable use of asymmetry
indices, see Thut et al., 2006).

After forcing the control variables (test location, sex, age) into a linear
regression model predicting RT asymmetry, the neural signal asymmetry
indices were each added sequentially into consecutive regression models

Figure 1. A, Behavioral paradigm. Participants fixated on the central dot while monitoring the two peripheral patches of randomly moving dots for intermittent periods of coherent downward
motion that could occur in either the left or the right hemifield at an unpredictable time. Participants made a speeded button press upon detection of the coherent motion target. B, Pretarget-�
power was greater over right than left hemisphere posterior regions. C, Target Hemifield had no significant effect on the N2c or N2i signals. D, Target Hemifield had no significant effect on motor
selective LHB desynchronization. Insets throughout the subplots show scalp topography of each of the neural signals, and the error ribbons (C and D) represent 95% CI for mean amplitude.
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in a hierarchical fashion with their entry order determined by their tem-
poral order in the perceptual decision-making process. This allowed us to
model individual differences in RT asymmetry, as a function of asymme-
tries in neural signals representing each temporal stage of perceptual
decision making, from a pretarget preparatory signal (� power), to target
selection (N2c), to evidence accumulation (CPP), to motor preparation
(LHB). The hierarchical entry method allowed us to assess whether each
of the different signals improved the model fit for RT asymmetry over
and above the signals that temporally precede it. Only those signals that
explained unique variation in RT asymmetry were then selected for
forced input into a final simplified RT-asymmetry model, which made it
possible to obtain accurate parameter estimates not influenced by other
signals shown not to improve model fit.

Analyses in the current manuscript focused on visuospatial biases at
the level of individual participants, rather than within-participant abso-
lute RT. Nevertheless, in accordance with past work, each of the neural
signals in the current study was significantly correlated with absolute RT
(e.g., pretarget �: Thut et al., 2006, Loughnane et al., 2015; the N2c
component: Loughnane et al., 2016; the CPP: O’Connell et al., 2012;
Kelly and O’Connell, 2013; limb-selective LHB: Donner et al., 2009;
O’Connell et al., 2012; de Lange et al., 2013).

Results
Target-detection accuracy was at ceiling (mean, 98.7%; range:
92–100%) and a factorial permutation test showed no effect of
Target Hemifield on accuracy (p � 0.852). As expected, RTs were
significantly faster for left hemifield targets (mean, 561 ms; SD �
91) than right hemifield targets [mean, 576 ms; SD � 105;
F(1,79) � 11.09, p � 0.001, �G

2 (generalized �-squared) � 0.006,
ppermuted � 0.001], which is characteristic of the phenomenon of
pseudoneglect (Fig. 2A). A significant effect of Hemisphere
showed that pretarget-� power was greater over the right (mean,
1.98 �V; SD � 0.95) compared with left parietal regions (mean,
1.85 �V; SD � 0.97; F(1,79) � 11.47, p � 0.001, �G

2 � 0.004,
ppermuted � 0.001; Fig. 1B). Although the N2c was noticeably
larger following left hemifield targets, and the N2i larger follow-
ing right hemifield targets, these differences did not produce sig-

nificant main effects of Hemifield (N2i latency F(1,79) � 0.15, p �
0.695, ppermuted � 0.691; N2i amplitude F(1,79) � 1.26, p � 0.265;
N2c latency F(1,79) � 0.005, p � 0.939, ppermuted � 0.946; N2c
amplitude F(1,79) � 0.08, p � 0.784; Fig. 1C). Combining N2c and
N2i into a Hemisphere (contralateral, ipsilateral) � Hemifield
(left, right) ANOVA confirmed that the contralateral signal is
larger and earlier than the ipsilateral signal (amplitude F(1,79) �
62.74, p � 0.001, �G

2 � 0.13; latency F(1,79) � 94.22, p � 0.001,
ppermuted � 0.001, �G

2 � 0.21; Fig. 1C). However, there was no
significant main effect of Hemifield (amplitude F(1,79) � 0.40,
p � 0.528; latency F(1,79) � 0.16, p � 0.695, ppermuted � 0.688) or
Hemisphere � Hemifield interaction (amplitude F(1,79) � 0.62,
p � 0.434; latency F(1,79) � 0.09, p � 0.769, ppermuted � 0.743).

The CPP signal began significantly earlier for left hemifield
targets (mean, 319 ms; SD � 72) than for right hemifield targets
(mean, 341 ms; SD � 65; F(1,79) � 5.54, p � 0.025, �G

2 � 0.025),
suggesting an earlier onset of the evidence accumulation process
for left hemifield targets, consistent with the left hemifield RT
advantage (Fig. 2A,B). There was, however, no effect of Hemi-
field on the build-up rate of the CPP signal (F(1,79) � 1.26, p �
0.266) or on the motor-selective LHB signal (LHB amplitude
F(1,79) � 0.68, p � 0.413, ppermuted � 0.418; LHB slope F(1,79) �
0.19, p � 0.661, ppermuted � 0.66; Fig. 1D).

Next, the neural signal asymmetry indices were each added to
a model predicting RT asymmetry in a hierarchical fashion with
their entry order determined by their temporal order in the per-
ceptual decision-making process. This method allowed us to as-
sess whether each of the different signals improved the model fit
for RT asymmetry over and above the preceding signal. Note that
none of the neural asymmetry predictors were highly correlated
with each other.

When compared with an intercept-only model, the linear re-
gression model including the control variables (test location, sex,
age) offered no significant improvement in modeling RT asym-

Figure 2. A, CPP onset and RT both were significantly faster for left than right hemifield targets. Violin plots show conditional distributions while the purple dot-and-whisker plots show mean
and SE. Vertical lines project the means down to B. B, Stimulus-locked CPP waveform shows earlier onset for left than right hemifield targets. Inset shows the scalp topography of the CPP. Error
ribbons represent 95% CI for mean amplitude.
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metry (R 2 � 0.042, F(3,76) � 1.27, p � 0.29). The addition of
pretarget-� asymmetry significantly improved model fit (R 2 �
0.086, Rchange

2 � 0.044, F(1,75) � 4.02, p � 0.048). The addition of
N2c-amplitude asymmetry did not improve the model (R 2 �
0.086, Rchange

2 � 0.00, F(1,74) � 0.01, p � 0.918), while N2c-latency
asymmetry provided a significant improvement (R 2 � 0.133,
Rchange

2 � 0.047, F(1,73) � 4.30, p � 0.041). Adding CPP-onset
asymmetry also gave a significant improvement to the model
(R 2 � 0.21, Rchange

2 � 0.08, F(1,72) � 7.43, p � 0.008), while CPP-
slope asymmetry did not (R 2 � 0.22, Rchange

2 � 0.01, F(1,71) � 0.99,
p � 0.324). Neither LHB-amplitude asymmetry (R 2 � 0.23,
Rchange

2 � 0.01, F(1,70) � 0.84, p � 0.363) nor LHB-slope asymme-
try (R 2 � 0.25, Rchange

2 � 0.02, F(1,96) � 1.64, p � 0.204) offered
any improvement to the RT-asymmetry model. Overall, this hi-
erarchical regression analysis shows that the pretarget-�, N2c-
latency, and CPP-onset asymmetry indices each exert a partially
independent influence on RT asymmetry.

An algorithm for forward/backward stepwise model selection
using the Akaike information criterion (Venables and Ripley,
2002) supported the results from the hierarchical method, con-
firming that the only neural asymmetry signals to improve the
model for RT asymmetry are pretarget-� asymmetry, N2c-
latency asymmetry, and CPP-onset asymmetry. Thus, these three
signals only were then forced into a final linear regression model
of RT asymmetry (R 2 � 0.19, F(3,76) � 5.82, p � 0.001) and their
resulting parameter estimates are shown in Table 1 below. This
simplified model was necessary to obtain accurate parameter es-
timates for pretarget-�, N2c-latency, and CPP-onset asymmetry
that are not influenced by the other, noninformative, signals.

Table 1 shows pretarget-� asymmetry (p � 0.057) and N2c-
latency asymmetry (p � 0.067) fell short of the nominal statistical
significance threshold for their effect on RT asymmetry when
forced into the final linear regression model. This result is ambig-
uous since it conflicts with the results of the hierarchical regres-
sion method used above, which found that, along with CPP-onset
asymmetry, both pretarget-� and N2c-latency asymmetry added
significant improvement to the RT-asymmetry model. Likewise,
the forward/backwards stepwise method selected pretarget �,
N2c latency, and CPP onset as the best predictors for the model.
Therefore, to confirm whether each of the three neural asymme-
try measures had a significant effect on RT asymmetry, we per-
formed “robust regression” based on 5000 bootstrap replicates to
calculate the 95% CI around slope estimates for the final model
(Table 2).

The robust regression (Table 2) confirmed that pretarget-�
asymmetry, N2c-latency asymmetry, and CPP-onset asymmetry
all have a significant positive relationship with RT asymmetry.
These effects are in the expected direction based on past re-
search (Thut et al., 2006; Loughnane et al., 2015). The positive
relationship between pretarget-� asymmetry and RT asymme-
try (Fig. 3A) indicates that those participants with more pos-
itive pretarget-� asymmetry (i.e., relatively greater pretarget-�

power over their right than left hemisphere) tended to have more
positive RT asymmetry (i.e., relatively slower RTs for left hemi-
field targets or relatively faster RTs for right hemifield targets).
The positive relationship between N2c-latency asymmetry and
RT asymmetry (Fig. 3B) indicates that participants with more
negative N2c-latency asymmetry (i.e., earlier N2c latency for left
than right hemifield targets) also tended to have more negative
RT asymmetry (i.e., tended to respond relatively faster to left than
right hemifield targets). Finally, CPP-onset asymmetry had the
strongest relationship with RT asymmetry (Tables 1, 2). This
positive relationship (Fig. 3C) indicates that participants who had
more leftward CPP-onset bias (i.e., CPP onset relatively earlier
for left than right hemifield targets) also tended to have more
prominent leftward RT asymmetry (i.e., tended to respond faster
to left than right hemifield targets). This result suggests that ear-
lier onset of the evidence accumulation process for left hemifield
targets leads to a left hemifield RT advantage. That CPP-onset
asymmetry was the strongest predictor of RT asymmetry is not
due solely to its temporal proximity to response execution.
This is the case since neither CPP slope nor LHB asymmetry,
which occur closer to response, explained unique variance in
RT asymmetry.

Discussion
This study asked whether individual differences in visuospatial
asymmetry are indexed by functional asymmetries in electrocor-
tical activity. We used a perceptual decision-making framework,
with bilaterally presented dot motion targets, to track the tempo-
ral evolution of discrete EEG signals contributing to visuospatial
biases. In line with previous reports, we found that hemispheric
differences in pretarget posterior �-band activity accounted for
individual differences in visuospatial bias. But further to this, we
also uncovered independent contributions from target-selection
and evidence-accumulation signals that have not been previously
reported. An asymmetry index derived from the peak latency of
the N2c, a target-selection signal, explained unique variation
in visuospatial bias among individuals. The CPP signal, which
tracks perceptual evidence accumulation, began earlier for left
than for the right hemifield targets and the degree of this asym-
metry also explained individual differences in visuospatial bias.

Previous electrophysiology work on visuospatial attention
has focused on hemispheric asymmetries in pretarget-� power
(Worden et al., 2000; Sauseng et al., 2005; Thut et al., 2006; Gould
et al., 2011; Newman et al., 2013; ter Huurne et al., 2013; Capilla
et al., 2014; Loughnane et al., 2015). These studies have shown
that processing advantages for the left relative to the right hemi-
field, particularly in cued target-detection paradigms, are related
to more desynchronization of � over right, relative to left, poste-
rior regions. We support this finding, albeit with a relatively small
effect size, in the context of an uncued fixation-controlled para-
digm. Although absolute � power was greater over the right pos-
terior hemisphere at the group grand average (Slagter et al.,
2016), individual differences in the hemispheric �-asymmetry
index related to RT asymmetry in the direction expected. The

Table 1. Parameter estimates from the final linear regression model of RT
asymmetry, which included only those neural asymmetry measures that improved
model fit

b (slope) b SE t � p

Pretarget-� asymmetry 0.093 0.048 1.934 0.201 0.057
N2c-latency asymmetry 0.066 0.036 1.859 0.192 0.067
CPP-onset asymmetry 0.080 0.026 3.014 0.313 0.004

� Symbolizes standardized �, which represents the relative importance of each predictor, independent of the unit
of measurement. Together these three neural asymmetry measures explained 19% of the variation in RT asymmetry
among participants.

Table 2. Robust regression analysis

Bootstrapped 95% CIs for b (slope) estimatesa

Pretarget-� asymmetry 0.003– 0.180
N2c-latency asymmetry 0.001– 0.149
CPP-onset asymmetry 0.025– 0.147
aBootstrapped 95% confidence intervals (CIs) for the slope estimate of the neural signals in the final linear regression
model of RT asymmetry.
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positive relationship between � and RT asymmetry indicates that
individuals with relatively less spontaneous pretarget-� power
over their right than left hemisphere tended to have relatively
faster RTs for left than right hemifield targets, as expected. It is
interesting therefore that the grand averages show greater right
hemisphere � and faster left hemifield RTs at the group level. It is
possible that this is caused by a separate source of right hemi-
sphere � modulation, which is not related to spatial bias and
which merges on the scalp with the signal produced by � gener-
ators for spatial attention.

The absence of sudden stimulus intensity changes in the cur-
rent paradigm eliminated visual-evoked transients from the
event-related EEG trace. This helped provide after target onset a
clearer view of the neural signals that contribute to decision for-
mation, increasing their signal-to-noise ratio and aiding in their
correlation with behavior. On the other hand, transient stimuli
(e.g., a checkerboard appearing on screen) can elicit the P1 com-
ponent and other visual evoked potentials than occur earlier
those recorded in the current study. Those visual evoked poten-
tials are modulated by spatial attention and reflect activity of
both striate and extrastriate regions (Robinson and Rugg,
1988; Luck, 1995; Clark and Hillyard, 1996; Di Russo et al.,
2002, 2008). Thus, the measurement of such signals may also
prove informative for investigating stimulus-driven asymme-
tries in spatial-attention bias.

Recently, Loughnane et al. (2016) used this paradigm to dem-
onstrate that early target-selection signals reliably precede the
onset of the neural evidence-accumulation process during per-
ceptual decision formation. The N2 selection signal, which con-
sists of distinct contralateral and ipsilateral components, was
found to predict behavioral performance (RT and accuracy) and
the build-up rate of the CPP evidence-accumulation signal, even
in the absence of distractor stimuli (Loughnane et al., 2016). Our
novel finding that those with relatively earlier N2c latency over
their right than left hemispheres also tend to have relatively faster
RTs for left than right hemifield targets suggests that the speed of
contralateral target-selection processes is a factor in individual
differences in spatial bias.

CPP onset, which began earlier for left than for right hemifield
targets, showed a clear effect of Target Hemifield. Furthermore, the
left versus right hemifield asymmetry index for CPP onset showed
the strongest relationship with RT asymmetry. The CPP signal was

recently characterized as a domain-general signal representing a
build-to-threshold decision variable, with dynamics that predict the
timing and accuracy of perceptual reports independently of specific
sensory or motor requirements (O’Connell et al., 2012; Kelly and
O’Connell, 2013; Murphy et al., 2015; Twomey et al., 2015; Lough-
nane et al., 2016). Here we build on mechanistically principled char-
acterization of the relevant signals to investigate neural asymmetry
indices and thereby advance our understanding of neural correlates
of visuospatial bias. Since all of the neural signals used here are ro-
bustly related to absolute RTs, it is informative that only a subset of
their asymmetry indexes was related to individual differences in RT
asymmetry.

The strongest of these indexes was CPP onset, which reflects the
onset timing of an evidence-accumulation process (O’Connell et al.,
2012; Kelly and O’Connell, 2013; Loughnane et al., 2016; Twomey et
al., 2016). The significantly earlier CPP onset for left hemifield tar-
gets indicates that the evidence-accumulation process tends to start
earlier for those targets, and this likely facilitates the improved pro-
cessing of left compared with right hemifield targets, commonly de-
scribed as pseudoneglect (Bowers and Heilman, 1980; Nicholls et al.,
1999; Jewell and McCourt, 2000; Voyer et al., 2012). Although the
CPP peaks over the central parietal scalp area, its dynamics bear a
striking similarity to neural firing rate signals recorded in lateral
parietal areas, such as the lateral intraparietal cortex, during primate
neurophysiology studies using similar visual stimuli (Shadlen and
Newsome, 2001). Since the right parietal cortex is heavily implicated
in visuospatial attention in humans (Corbetta and Shulman, 2011),
it will be of interest for future perceptual decision work to use com-
bined EEG/fMRI to explore the anatomical source of the CPP signal
in humans.

Previous studies have found that contralateral limb-selective
� activity, before a motor response, shows similar build-to-
threshold dynamics as the CPP (Donner et al., 2009; O’Connell et
al., 2012; de Lange et al., 2013). These dynamics in the � signal are
only seen when a motor response is required, whereas the CPP
represents perceptual decision formation independently of spe-
cific motor requirements (O’Connell et al., 2012). Here the LHB
signal did not differ between left and right hemifield targets and
did not relate to individual differences in visuospatial bias. That
CPP onset was related to the target hemifield and to individual
differences in visuospatial bias, while LHB was not, may be due to
the poorer temporal resolution of the LHB power measure, com-

Figure 3. Pretarget-�, N2c-latency, and CPP-onset asymmetry indices each exert a partially independent influence on RT asymmetry. A, The positive relationship indicates that those participants
with relatively greater pretarget-� power over their right than over their left hemisphere also tended to have relatively slower RTs for left hemifield targets than for right hemifield targets.
B, Participants with earlier N2c latency for left than for right hemifield targets also tended to have relatively faster RTs to left than to right hemifield targets. C, Participants who had earlier CPP onsets
for left than right hemifield targets also tended to have faster RTs for left than right hemifield targets. Note that the relationships shown in A and B are of small effect size. However, a “robust
regression analysis” confirmed that their slope is significantly �0 (Table 2).
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pared with the high resolution of CPP amplitude. Future work 
should counterbalance the response hand between blocks, within 
individual participants, to allow the measurement of a broad-
band lateralized readiness potential index (Gratton et al., 1988; de 
Jong et al., 1988; Eimer, 1998), which would have the same high 
temporal resolution as the CPP.

It should be noted that the exact results of the current study 
can only be generalized to the healthy right-handed population 
(the 90% majority; Sun and Walsh, 2006). This was, however, a 
deliberate experimental control. Studies of lateralization of func-
tion have shown that although handedness varies naturally in the 
population, left-handedness can sometimes be determined by 
early developmental effects (Gutwinski et al., 2011; Willems et al., 
2014). Consequently, including a left-handed cohort would ne-
cessitate substantial increases in the sample size and measures to 
ensure that left-handedness was not related to developmental 
differences. Therefore, this study was restricted to right-handed 
participants, in line with most other studies of spatial attention 
and with cognitive neuroscience studies more generally (Willems 
et al., 2014).

Although applied to healthy right-handed adults, the general 
approach described here may have important implications for 
studying disorders involving abnormal spatial-orienting biases. 
In the case of unilateral spatial neglect, for example, pathological 
inattention to left space could have multiple underlying causes, 
including biased attention, impaired decision formation, or a 
motor deficit related to one side of space. Yet current clinical tests 
for spatial neglect rely on classic paper-and-pencil tests, such as 
line bisection or cancellation tasks, which confound sensory, at-
tentional, and motoric processes. Our development of a single 
electrophysiology paradigm that can dissociate each of these 
components to track the temporal evolution of spatial biases may 
aid differential diagnosis in such heterogeneous disorders of at-
tention. An unprecedented level of specificity regarding deficient 
processes may yet be gained in future research by applying these 
methods to disorders involving aberrant visuospatial biases, such 
as unilateral spatial neglect, ADHD, and dyslexia (Voeller and 
Heilman, 1988; Sheppard et al., 1999; Facoetti et al., 2001; Hari et 
al., 2001; Geeraerts et al., 2008; Chan et al., 2009; Liddle et al., 
2009; Corbetta and Shulman, 2011; Stenneken et al., 2011).

Notes
Supplemental material for this article is available at https://fig-
share.com/articles/Supplemental_Material_Visuospatial_ asym-
metries_arise_from_differences_in_the_onset_time_of_ percep 
tual_evidence_accumulation/4591027. In accordance with past 
work, each of the neural signals in the current study was signifi-
cantly correlated with absolute RTs (Supplemental Fig. 1). Note 
that none of the neural asymmetry predictors were highly 
correlated with each other (Supplemental Fig. 2). This material 
has not been peer reviewed. Analysis scripts and paradigm 
code (https://github.com/gerontium/big_dots) as well as the raw 
data (https://figshare.com/s/8d6f461834c47180a444) are open 
access and available under a Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 International License.
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